EXTRACT

Transforaminal Endoscopic Surgery – Technique and Provisional Results in Primary Disc Herniation

a report by

Menno Iprenburg
Orthopaedic Surgeon, Spine Clinic
Iprenburg, Heerenveen
Back pain with or without sciatic symptoms (leg pain) is very common, with a lifetime prevalence in western industrialised countries of up to 80%. In 5% of patients with acute lumbago, symptoms are thought to be caused by lumbar disc herniation. Lately, both medical experts and patients have shown a growing interest in minimally invasive spine surgery. This kind of procedure has proved to be a reliable treatment for several spinal disorders. In the 1970s, Kambin and Hijikata began to use specially designed cannulas to perform percutaneous dorsolateral nucleotomy, with a reported satisfactory outcome in 75% of their patients. More recently, Anthony Yeung, Martin Knight, San Ho Lee and Thomas Hoogland, have used more laterally located entrance points with the help of smaller-calibre rod lens fibre optics. The procedure described below was developed by Dr Thomas Hoogland in conjunction with Johfak in Germany. I have been using it since August 2004, and in the last three years I have used the procedure in 330 cases. Below I will describe the technique and provide a short resumé of the preliminary results of a survey of the first 176 cases of primary disc herniations.

Operating Technique

Positioning the patient well is essential. It must be possible, with the help of the image intensifier, to view the spine closely in two directions – anteroposterior (AP) and lateral – at an angle of 90º exactly. My personal preference, after approximately 300 patients, is the lateral position. Confirmation of the position of the annular tear, protrusion and/or sequestrated disc material can be obtained by intra-operative discography.

The patient lies on his or her left side. The position of the iliac crest is marked and a line is drawn across the process spinosi (see Figure 1). Depending on the patient’s posture, a line is drawn 14–15cm from the centre if the herniation is at the level L5–S1, with herniations at levels L4–5 and L3–4, the distance is reduced by 1 or 2cm, respectively. Local anaesthesia is administered at the place of entrance (see Figure 2). The needle is set and its position is checked by means of the image intensifier (see Figure 3). After the needle has reached the correct position – the place where the hernia is most prominent – a guidewire is inserted (see Figures 4 and 5). Next, the first conical rod is introduced over the guidewire and, subsequently, the first, second and third conical tubes, in order to stretch the soft parts. The second and third conical tubes are then removed and the first reamer is introduced, in an anti-clockwise direction.

Using the image intensifier to check the procedure, a fraise is inserted to a minimum of 1mm medially from the medial interpedicular line, then the fraise, the first conical tube and the first conical rod are removed. However, the guidewire remains in place at this point. For the patient, this first fraise is often the most painful. At levels L5–S1, the procedure is usually carried out close to the iliac crest. It may be painful if the iliac crest is passed, so it is recommended that the iliac crest receive extra local anaesthetic. A second conical rod is inserted over the guidewire up to the required level; this is checked using the image intensifier, then the second conical tube and the second fraise are inserted. The process is repeated for the third conical rod, tube and fraise. In cases of L4–5 and L5–S1 herniations, the patient is told to inform the operating team if he or she experiences pain under the knee. Sometimes, pain is felt in the trochanter major region during fraising, or even radiating pain in the proximal lateral upper leg. However, the patient is usually comfortable and can have a conversation with the anaesthetist during the operation (vocal anaesthesia).

The working cannula can be introduced over the third conical rod. Its tip should be located on the hernia. To achieve sufficient depth, it is often necessary to use the hammer for the last stage, after removing the guidewire and the third conical rod (see Figure 6). The image intensifier continuously checks the position of the working cannula (see Figure 7).

Next, the foraminoscope is introduced and the hernia removed.
Spine

Orthopaedic Surgery

Figure 2: Administering Local Anaesthesia

Figure 3:–5: Setting the Needle and Checking its Position (3); Inserting the Guidewire (4 and 5)

Figure 6: Removing the Guidewire and the Conical Rod

Figure 7: The Image Intensifier Continuously Checks the Position of the Working Cannula

Figure 8: Visual Analogue Scale – Dutch Endoscopic Surgery versus Swedish Microscopic Surgery

Figure 9: Satisfaction – Dutch Endoscopic Surgery versus Swedish Microscopic Surgery

Figure 10: Walking – Dutch Endoscopic Surgery versus Swedish Microscopic Surgery

Sometimes, a big sequester can be wholly removed immediately, but in most cases the ‘crabmeat’ has to be taken out with a small pair of tongs; this requires a lot of patience. Intra-operatively, the patient can be asked to move his or her leg.

After the hernia is removed, the working cannula is also removed and the skin is closed with an intra-cutaneously dissolving stitch. The patient usually leaves the clinic two hours after the operation. Our check-ups consist of a telephone call on the first post-operative day and another after two weeks, at which point physiotherapy is started. A final consultation takes place in the clinic after approximately six weeks.

Results

Between August 2004 and August 2007, in the Wilhelmina Hospital in Assen, The Netherlands, 330 patients were operated on using this procedure. Most of these patients had a primary herniation and some had foraminal stenosis; some of the latter group also had a foraminal herniation. We performed retrospective research on the first 176 operated patients: 73 females and 103 males, with an average age of 49.4±4 years (range: 17–83). Contraindications for this procedure are dorsally dissected disc herniation, central stenosis and tumours.

To get a impression of the results, we compared our results after transfemoral endoscopic surgery (TES) with results from the Swedish National Spine Register of patients who had undergone microscopic surgery.17 Of course, randomised controlled trials are needed, but these are impossible in a private facility such as the Spine Clinic in Heerenveen as patients select such a facility for the specific purpose of being operated on endoscopically under local anaesthesia in day surgery. Therefore, we are setting up Web-based research for all of our operated patients within the parameters of the Swedish National Spine Register.18

The locations of the hernias (n=176) were as follows:

- L3–L4 – 8;
- L4–L5 – 63;
- L5–S1 – 78;
- recurvatum L4–L5 – 9;
- recurvatum L5–S1 – 6; and
- hernia nuclear pulposis (HNP) with foraminal stenosis – 7, and foraminal stenosis – 5.

From these patients, those with a first disc herniation (n=149) were picked. In this group there were 62 females and 87 males. Average age was 49.3±12 years (range: 17–82). Visual Analogue Scale (VAS) scores for the back and the leg and Roland and Oswestry scores were sent to all patients, and we received a reply from 106 (71%).

Conclusions

Although these results are preliminary and further studies are needed, we conclude that we achieved good clinical results with TES under local anaesthesia on an outpatient basis. Our patients were highly satisfied, and in most parameters we saw better results than the Swedish registry data (see Figures 8–10). Our recurrence rate was 6%. As with every surgical intervention, the right diagnosis is essential in order to achieve good results. Currently, patients with a hernia at the level L4–5 are doing better than those with a hernia at the level L5–S1. Most likely, the results for hernias at levels L5–S1 will improve in time as we gain experience. At the level L5–S1, we now have to ream twice or even three times in order to reach the medially located hernia.

The advantages of TES are:

- only local anaesthesia;
- reduced risk of infection;
- reduced risk of instability;
- fewer subsequent scars;
- keyhole surgery; and
- short rehabilitation time.

The disadvantages of TES are:

- the long learning curve;
- only 2D view; and
- the need for new technology at a higher cost.
Orthopaedic Surgery

Processi Spinosi

Figures 3–5: Setting the Needle and Checking Its Position (3); another after two weeks, at which point physiotherapy is started. A check-ups consist of a telephone call on the first post-operative day and patient usually leaves the clinic two hours after the operation. Our the skin is closed with an intra-cutaneously dissolving stitch. The tongs; this requires a lot of patience. Intra-operatively, the patient can be asked to move his or her leg.

To get a impression of the results, we compared our results after microscopic surgery. Therefore, we are setting up Web-based research for all of these patients, and we received a reply from 106 (71%).

From these patients, those with a first disc herniation (n=149) were picked. In this group there were 62 females and 87 males. Average age was 43±12 years (range: 17–82). Visual Analogue Scale (VAS) scores for the back and the leg and Roland and Oswestry scores were sent to all patients, and we received a reply from 106 (71%).

Conclusions

Although these results are preliminary and further studies are needed, we conclude that we achieved good clinical results with TES under local anaesthesia on an outpatient basis. Our patients were highly satisfied, and in most parameters we saw better results than the Swedish registry data (see Figures 8–10). Our recurrence rate was 6%. As with every surgical intervention, the right diagnosis is essential in order to achieve good results. Currently, patients with a hernia at the level L4–5 are doing better than those with a hernia at the level L5–S1. Most likely, the results for hernias at levels L5–S1 will improve in time as we gain experience. At the LS–S1 level, we now have to repeat twice or even three times in order to reach the medially located hernia.

The advantages of TES are:

• local anaesthesia;
• reduced risk of infection;
• reduced risk of instability;
• fewer subsequent scars;
• keyhole surgery; and
• short rehabilitation time.

The disadvantages of TES are:

• the long learning curve;
• only 2D view; and
• the need for new technology at a higher cost.

References

joimax Digital Endoscopy System

joimax provides the latest digital technologies for endoscopic surgery, specifically for performing the innovative, minimally invasive TESSYS™ surgical spine procedure.

The TESSYS™ Procedure Kit System

- Fragmentectomy
- Foraminoplasty
- Decompression
- Nucleotomy
- Annuloplasty
- Discography

The TESSYS™ Procedure Kit System

- Disposable Access Kits
- Color-coded reamers in different specifications
- Color-coded instruments
- Patented LOPS forceps system
- Patents pending

joimax Digital Endoscopy System

1. VEOIP™
 - Fully integrated image and video data recording with multi-task commanding
2. VEO TWISTER™
 - 360° Image Rotation continuously adjustable
 - Pixel-to-Pixel Zoom (microscopic function), Image Centering, Function
 - Task Generator (optional)
3. C-EMSAC™
 - Single cable technology for endoscopy
4. Surgi-Max™
 - A new era of microscopy technology offering maximum surgical precision, versatility, and safety
5. JRF 2000™
 - For arthroscopy and minimally invasive spine surgery
6. JFR 1500™
 - joimax FlatScreen Monitor
7. ICPP™
 - joimax Photoprinter

joimax provides the latest digital technologies for endoscopic surgery, specifically for performing the innovative, minimally invasive TESSYS™ surgical spine procedure.
EXTRACT

Transformaminal Endoscopic Surgery – Technique and Provisional Results in Primary Disc Herniation

a report by

Menno Iepenburg

Orthopaedic Surgeon, Spine Clinic
Iepenburg, Heerenveen